2,201 research outputs found

    Unified Models of Molecular Emission from Class 0 Protostellar Outflow Sources

    Full text link
    Low mass star-forming regions are more complex than the simple spherically symmetric approximation that is often assumed. We apply a more realistic infall/outflow physical model to molecular/continuum observations of three late Class 0 protostellar sources with the aims of (a) proving the applicability of a single physical model for all three sources, and (b) deriving physical parameters for the molecular gas component in each of the sources. We have observed several molecular species in multiple rotational transitions. The observed line profiles were modelled in the context of a dynamical model which incorporates infall and bipolar outflows, using a three dimensional radiative transfer code. This results in constraints on the physical parameters and chemical abundances in each source. Self-consistent fits to each source are obtained. We constrain the characteristics of the molecular gas in the envelopes as well as in the molecular outflows. We find that the molecular gas abundances in the infalling envelope are reduced, presumably due to freeze-out, whilst the abundances in the molecular outflows are enhanced, presumably due to dynamical activity. Despite the fact that the line profiles show significant source-to-source variation, which primarily derives from variations in the outflow viewing angle, the physical parameters of the gas are found to be similar in each core.Comment: MNRAS 12 pages, 16 figure

    Predictive Control for Alleviation of Gust Loads on Very Flexible Aircraft

    No full text
    In this work the dynamics of very flexible aircraft are described by a set of non-linear, multi-disciplinary equations of motion. Primary structural components are represented by a geometrically-exact composite beam model which captures the large dynamic deformations of the aircraft and the interaction between rigid-body and elastic degrees-of-freedom. In addition, an implementation of the unsteady vortex-lattice method capable of handling arbitrary kinematics is used to capture the unsteady, three-dimensional flow-eld around the aircraft as it deforms. Linearization of this coupled nonlinear description, which can in general be about a nonlinear reference state, is performed to yield relatively high-order linear time-invariant state-space models. Subsequent reduction of these models using standard balanced truncation results in low-order models suitable for the synthesis of online, optimization-based control schemes that incorporate actuator constraints. Predictive controllers are synthesized using these reduced-order models and applied to nonlinear simulations of the plant dynamics where they are shown to be superior to equivalent optimal linear controllers (LQR) for problems in which constraints are active

    Near-Infrared Observations of Powerful High-Redshift Radio Galaxies: 4C 40.36 and 4C 39.37

    Get PDF
    We present near-infrared imaging and spectroscopic observations of two FR II high-redshift radio galaxies (HzRGs), 4C 40.36 (z=2.3) and 4C 39.37 (z=3.2), obtained with the Hubble, Keck, and Hale Telescopes. High resolution images were taken with filters both in and out of strong emission lines, and together with the spectroscopic data, the properties of the line and continuum emissions were carefully analyzed. Our analysis of 4C 40.36 and 4C 39.37 shows that strong emission lines (e.g., [O III] 5007 A and H alpha+[N II]) contribute to the broad-band fluxes much more significantly than previously estimated (80% vs. 20-40%), and that when the continuum sources are imaged through line-free filters, they show an extremely compact morphology with a high surface brightness. If we use the R^1/4-law parametrization, their effective radii (r(e)) are only 2-3 kpc while their restframe B-band surface brightnesses at r(e) are I(B) ~ 18 mag/arcsec^2. Compared with z ~ 1 3CR radio galaxies, the former is x3-5 smaller, while the latter is 1-1.5 mag brighter than what is predicted from the I(B)-r(e) correlation. Although exponential profiles produce equally good fits for 4C 40.36 and 4C 39.37, this clearly indicates that with respect to the z~1 3CR radio galaxies, the light distribution of these two HzRGs is much more centrally concentrated. Spectroscopically, 4C 40.36 shows a flat (fnu=const) continuum while 4C 39.37 shows a spectrum as red as that of a local giant elliptical galaxy. Although this difference may be explained in terms of a varying degree of star formation, the similarities of their surface brightness profiles and the submillimeter detection of 4C 39.37 might suggest that the intrinsic spectra is equally blue (young stars or an AGN), and that the difference is the amount of reddening.Comment: 30 pages, 6 tables, 10 figures; Accepted for publication in Astronomical Journa

    CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483

    Full text link
    CO isotopes are able to probe the different components in protostellar clouds. These components, core, envelope and outflow have distinct physical conditions and sometimes more than one component contributes to the observed line profile. In this study we determine how CO isotope abundances are altered by the physical conditions in the different components. We use a 3D molecular line transport code to simulate the emission of four CO isotopomers, 12CO J=2-1, 13CO J=2-1, C18O J=2-1 and C17O J=2-1 from the Class 0/1 object L483, which contains a cold quiescent core, an infalling envelope and a clear outflow. Our models replicate JCMT (James Clerk Maxwell Telescope) line observations with the inclusion of freeze-out, a density profile and infall. Our model profiles of 12CO and 13CO have a large linewidth due to a high velocity jet. These profiles replicate the process of more abundant material being susceptible to a jet. C18O and C17O do not display such a large linewidth as they trace denser quiescent material deep in the cloud.Comment: 9 figures, 13 pages, 2 table

    Whither discrete time model predictive control?

    Get PDF
    This note proposes an efficient computational procedure for the continuous time, input constrained, infinite horizon, linear quadratic regulator problem (CLQR). To ensure satisfaction of the constraints, the input is approximated as a piecewise linear function on a finite time discretization. The solution of this approximate problem is a standard quadratic program. A novel lower bound on the infinite dimensional CLQR problem is developed, and the discretization is adaptively refined until a user supplied error tolerance on the CLQR cost is achieved. The offline storage of the required quadrature matrices at several levels of discretization tailors the method for online use as required in model predictive control (MPC). The performance of the proposed algorithm is then compared with the standard discrete time MPC algorithms. The proposed method is shown to be significantly more efficient than standard discrete time MPC that uses a sample time short enough to generate a cost close to the CLQR solution

    Expanding e-MERLIN with the Goonhilly Earth Station

    Full text link
    A consortium of universities has recently been formed with the goal of using the decommissioned telecommunications infrastructure at the Goonhilly Earth Station in Cornwall, UK, for astronomical purposes. One particular goal is the introduction of one or more of the ~30-metre parabolic antennas into the existing e-MERLIN radio interferometer. This article introduces this scheme and presents some simulations which quantify the improvements that would be brought to the e-MERLIN system. These include an approximate doubling of the spatial resolution of the array, an increase in its N-S extent with strong implications for imaging the most well-studied equatorial fields, accessible to ESO facilities including ALMA. It also increases the overlap between the e-MERLIN array and the European VLBI Network. We also discuss briefly some niche science areas in which an e-MERLIN array which included a receptor at Goonhilly would be potentially world-leading, in addition to enhancing the existing potential of e-MERLIN in its role as a Square Kilometer Array pathfinder instrument.Comment: 7 pages, 3 figures, to appear in the proceedings of "Astronomy with megastructures: Joint science with the E-ELT and SKA", 10-14 May 2010, Crete, Greece (Eds: Isobel Hook, Dimitra Rigopoulou, Steve Rawlings and Aris Karastergiou

    Polymer Bound Photobase Generators And Photoacid Generators For Pitch Division Lithography

    Get PDF
    The semiconductor industry is pursuing several process options that provide pathways to printing images smaller than the theoretical resolution limit of 193 nm projection scanners. These processes include double patterning, side wall deposition and pitch division. Pitch doubling lithography (PDL), the achievement of pitch division by addition of a photobase generator (PBG) to typical 193 nm resist formulations was recently presented. 1 Controlling the net acid concentration as a function of dose by incorporating both a photoacid generator (PAG) and a PBG in the resist formulation imparts a resist dissolution rate response modulation at twice the frequency of the aerial image. Simulation and patterning of 45 nm half pitch L/S patterns produced using a 90 nm half pitch mask were reported. 2 Pitch division was achieved, but the line edge roughness of the resulting images did not meet the current standard. To reduce line edge roughness, polymer bound PBGs and polymer bound PAGs were investigated in the PDL resist formulations. The synthesis, purification, analysis, and functional performance of various polymers containing PBG or PAG monomers are described herein. Both polymer bound PBG with monomeric PAG and polymer bound PAG with monomeric PBG showed a PDL response. The performance of the polymer bound formulations is compared to the same formulations with small molecule analogs of PAG and PBG.Chemical Engineerin

    Molecular tracers of high mass star-formation in external galaxies

    Full text link
    Hot core molecules should be detectable in external active galaxies out to high redshift. We present here a detailed study of the chemistry of star-forming regions under physical conditions that differ significantly from those likely to be appropriate in the Milky Way Galaxy. We examine, in particular, the trends in molecular abundances as a function of time with respect to changes in the relevant physical parameters. These parameters include metallicity, dust:gas mass ratio, the H2_{2} formation rate, relative initial elemental abundances, the cosmic ray ionization rate, and the temperature of hot cores. These trends indicate how different tracers provide information on the physical conditions and on evolutionary age. We identify hot core tracers for several observed galaxies that are considered to represent spirals, active galaxies, low-metallicity galaxies, and high-redshift galaxies. Even in low-metallicity examples, many potential molecular tracers should be present at levels high enough to allow unresolved detection of active galaxies at high redshift containing large numbers of hot cores.Comment: 11 pages, 8 figures, accepted in Ap

    Closed-Loop Scheduling for Cost Minimization in HVAC Central Plants

    Get PDF
    In this paper, we examine closed-loop operation of an HVAC central plant to demonstrate that closed-loop receding-horizon scheduling provides robustness to inaccurate forecasts, and that economic performance is not seriously impaired by shortened prediction horizons or inaccurate forecasts when feedback is employed. Using a general mixed-integer linear programming formulation for the scheduling problem, we show that optimization can be performed in real time. Furthermore, we demonstrate that closed-loop operation with a moderate prediction horizon is not significantly worse than a long-horizon implementation in the nominal case, and that closed-loop operation can correct for inaccurate long-term forecasts without significant cost increase. In addition, we show that terminal constraints can be employed to ensure recursive feasibility. The end result is that forecasts of demand need not be extremely accurate over long times, indicating that closed-loop scheduling can be implemented in new or existing central plants

    Design and Application of Distributed Economic Model Predictive Control for Large-Scale Building Temperature Regulation

    Get PDF
    Although recent research has suggested model predictive control as a promising solution for minimizing energy costs of commercial buildings, advanced control systems have not been widely deployed in practice. Large-scale implementations, including industrial complexes and university campuses, may contain thousands of air handler units each serving a multiplicity of zones. A single centralized control system for these applications is not desirable. In this paper, we propose a distributed control system to economically optimize temperature regulation for large-scale commercial building applications. The decomposition strategy considers the complexities of thermal energy storage, zone interactions, and chiller plant equipment while remaining computationally tractable. One of the primary benefits of the proposed formulation is that the low-level airside problem can be decoupled and solved in a distributed manner; hence, it can be easily extended to handle large applications. Peak demand charges, a major source of coupling, are included. The interactions of the airside system with the waterside system are also considered, including discrete decisions, such as turning chillers on and off. To deploy such a control scheme, a system model is required. Since using physical knowledge about building models can greatly reduce the number of parameters that must be identified, grey-box models are recommended to reduce the length of expensive identification testing. We demonstrate the effectiveness of this control system architecture and identification procedure via simulation studies
    • …
    corecore